Insignia AI Notes #5: Context is king and other learnings from … – TechNode Global

In our first AI Notes piece, we wrote about how the popular rise of ChatGPT and the subsequent opening up of OpenAI’s API led to the proliferation of GPT apps, not all of which have proven to be quite accurate or secure, especially the consumer-facing ones that are not used for specific contexts.
At the same time, many businesses have been able to leverage GPT (be it with their own models or OpenAI’s) in a more specific and secure manner, developing internal tools and customer service features primarily to deliver curated/personalized outputs faster, whether that’s on market information (BloombergGPT), designs and formatting (Notion, Canva), or omnichannel customer engagement campaigns (WIZ.AI’s TalkGPT).
We also dipped our hands into this and made our own GPT-powered website chatbot with the primary goal of being able to talk about Insignia Ventures (i.e., primarily information from our website as context) and share some insights to founders (i.e., primarily views on financial management from Insignia Business Review, as we launched the chatbot in our last Insignia Founders Club event on the topic).
And so for this week’s AI notes, we list down five key learnings from the experience, both from the perspective of developing the chatbot and linking specific context to OpenAI’s language model to developing the context itself in such a way that would make it more cost-efficient and still effective for the overall user experience.
Before going any further, if you haven’t tried out the bot, you can chat with it at

Website chatbot use case: 
One way to approach costs of context:
Cosine similarity in layman’s terms: Often used way to measure how similar or different two text phrases are
Website chatbot use case: 
One way to approach latency issues:

1. AI may not be necessary at all points of the user experience depending on the scope of the use case and budget. Rote automation may be more cost-effective than “learning.” It is important to evaluate use cases starting from a pain point and user journey perspective. “Forcing” AI may actually result in issues that only worsen user experiences at a certain scale.
2. Costs can vary and rack up depending on the size of the context and complexity of the task required. Consider all options — using an API and instead making a proprietary model may be better for the long-term bottom line.
3. Latency and storage trade-offs are key issues that need to be considered in the use case’s operation (in some cases faster response time may require more use of in-house storage). This also goes back to budget and cost considerations. Some base models have better latency, or if it’s an in-house model then storage costs are already accepted.
4. Context is king and feeding context is not a one-time thing. GPT cannot learn what it hasn’t received as input — and feeding context can be labor-intensive depending on budget and use case. The model has to be regularly fed new inputs beyond the engagement itself (for example, market data for a financial advisor AI or new legal precedents for a legal advisor AI). It is important to factor this “feeding” into data operations of the organization.
5. There are limits to the capabilities of a scaled product (e.g., requests per minute, latency, context size, etc.) that need to be considered in developing the user experience around the use case. It is important to also consider how workarounds in terms of costs impact the delivery of a user-friendly experience, and how much the use case will depend on third-party infrastructure vs in-house capabilities.
Paulo Joquiño is a writer and content producer for tech companies, and co-author of the book Navigating ASEANnovation. He is currently Editor of Insignia Business Review, the official publication of Insignia Ventures Partners, and senior content strategist for the venture capital firm, where he started right after graduation. As a university student, he took up multiple work opportunities in content and marketing for startups in Asia. These included interning as an associate at G3 Partners, a Seoul-based marketing agency for tech startups, running tech community engagements at coworking space and business community, ASPACE Philippines, and interning at workspace marketplace FlySpaces. He graduated with a BS Management Engineering at Ateneo de Manila University in 2019.
This article is the first part of a series on AI and was originally published on the Insignia Business Review.
TechNode Global INSIDER publishes contributions relevant to entrepreneurship and innovation. You may submit your own original or published contributions subject to editorial discretion.
Insignia AI Notes #4: Do you really need AI?

Q&A and interviews
Startup profiles
Thought leadership
About TNGlobal
Our Services
Partner With Us
Join Us
Write For Us / Tips
Subscribe: Community newsletter
Subscribe: Daily Telegram updates
TechNode EN
TechNode Russian